Heartland
GrowGeneration Jumps Into Arizona
The hydroponic store chain GrowGeneration Corp. (NASDAQ: GRWG) is making a big bet on the Arizona market. The company announced that it was buying Hydroponics Depot, Phoenix’s largest indoor and outdoor garden center. The company did not disclose how much was paid for the company and whether the deal was stock or cash or a combination. The […]
The post GrowGeneration Jumps Into Arizona appeared first on Green Market Report.
The hydroponic store chain GrowGeneration Corp. (NASDAQ: GRWG) is making a big bet on the Arizona market. The company announced that it was buying Hydroponics Depot, Phoenix’s largest indoor and outdoor garden center. The company did not disclose how much was paid for the company and whether the deal was stock or cash or a combination.
The acquisition of Hydroponics Depot brings GrowGen’s portfolio of hydroponic garden centers to 29 stores across 11 states. “We’re excited to add Hydroponics Depot to our growing portfolio, with year-to-date sales in excess of $5 million and year-over-year growth at 50 percent,” said Tony Sullivan, GrowGen’s COO. “Importantly, it represents our 11th state and our first retail operation in Arizona, a key market in GrowGen’s growth plan. We see tremendous potential from both a medical and recreational standpoint.”
GrowGen pointed out that its entry into the Arizona market comes as voters consider Prop 207, which would legalize limited possession, cultivation, and use of marijuana for adults ages 21 years or older. If approved, it is estimated that Arizona’s cannabis market could grow from over a $700 million market in 2020 into a $2 billion market, including both recreational and medical marijuana. Retail sales of medical marijuana products in the state rose nearly 20% from January to May, according to the Arizona state estimates.
Hindenburg Research Fallout
The company has been relatively quiet since August’s report from well-known short-seller Hindenburg Research that questioned the company’s management team in a report. The company has chosen several cannabis companies over the years to write damning reports typically after the company has shorted shares with the goals of making existing shareholders sell. Then Hindenburg buys back the stock to cover its short at the lower price and thus making a profit.
The report doesn’t find fault with the company’s financial statements and indeed calls the company’s latest quarter “impressive” and called the business model”interesting.” It takes issue with the price of the shares being overvalued and felt that there should be a correction in the price of the company stock. However, it saved most of its criticism for the company’s executive team, which it accuses of having unsavory ties to past criminal behavior involving stock fraud.
GrowGeneration said it planned to take action against Hindenburg. Schall Legal firm had planned to investigate claims against GrowGeneration, but following a letter from GrowGeneration has had a change of heart and announced at the end of August it was no longer pursuing that investigation.
The stock fell from a year’s high of $22.88 following the report, but was beginning to recover and was lately trading at $18.86 as the stock moved higher in early trading on the news of the Arizona acquisition.
Post Views:
32
Heartland
The Role of Cannabinoids as Anticancer Agents in Pediatric Oncology
Cannabinoids are a group of chemicals that bind to receptors in the human body and, in turn, modulate the endocannabinoid system (ECS). They can be endogenously produced, synthetic, or derived from the plant Cannabis sativa L. Research over the past several decades has shown that the ECS is a cellular communication network essential to maintain multiple biological functions and the homeostasis of the body. Indeed, cannabinoids have been shown to influence a wide variety of biological effects,…

Cannabinoids are a group of chemicals that bind to receptors in the human body and, in turn, modulate the endocannabinoid system (ECS). They can be endogenously produced, synthetic, or derived from the plant Cannabis sativa L. Research over the past several decades has shown that the ECS is a cellular communication network essential to maintain multiple biological functions and the homeostasis of the body. Indeed, cannabinoids have been shown to influence a wide variety of biological effects, including memory, pain, reproduction, bone remodeling or immunity, to name a few. Unsurprisingly, given these broad physiological effects, alterations of the ECS have been found in different diseases, including cancer. In recent years, the medical use of cannabis has been approved in different countries for a variety of human conditions. However, the use of these compounds, specifically as anticancer agents, remains controversial. Studies have shown that cannabinoids do have anticancer activity in different tumor types such as breast cancer, melanoma, lymphoma and adult brain cancer. Specifically, phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) has been shown to induce apoptosis and inhibit proliferation of adult cancer cells, as well as modulate angiogenesis and metastasis. Despite increasing evidence that cannabinoids elicit antitumor effects in adult cancers, there is minimal data available on their effects in children or in pediatric cancers despite public and clinical demand for information. Here we describe a comprehensive and critical review of what is known about the effects of cannabinoids on pediatric cancers, highlight current gaps in knowledge and identify the critical issues that need addressing before considering these promising but controversial drugs for use in pediatric oncology.
Keywords: CBD; THC; cannabidiol; cannabinoid; childhood cancer; medical cannabis; pediatric oncology; Δ9-tetrahydrocannabinol.
Heartland
Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment
Cannabis sativa L. turned out to be a valuable source of chemical compounds of various structures, showing pharmacological activity. The most important groups of compounds include phytocannabinoids and terpenes. The pharmacological activity of Cannabis (in epilepsy, sclerosis multiplex (SM), vomiting and nausea, pain, appetite loss, inflammatory bowel diseases (IBDs), Parkinson’s disease, Tourette’s syndrome, schizophrenia, glaucoma, and coronavirus disease 2019 (COVID-19)), which has been…

Cannabis sativa L. turned out to be a valuable source of chemical compounds of various structures, showing pharmacological activity. The most important groups of compounds include phytocannabinoids and terpenes. The pharmacological activity of Cannabis (in epilepsy, sclerosis multiplex (SM), vomiting and nausea, pain, appetite loss, inflammatory bowel diseases (IBDs), Parkinson’s disease, Tourette’s syndrome, schizophrenia, glaucoma, and coronavirus disease 2019 (COVID-19)), which has been proven so far, results from the affinity of these compounds predominantly for the receptors of the endocannabinoid system (the cannabinoid receptor type 1 (CB1), type two (CB2), and the G protein-coupled receptor 55 (GPR55)) but, also, for peroxisome proliferator-activated receptor (PPAR), glycine receptors, serotonin receptors (5-HT), transient receptor potential channels (TRP), and GPR, opioid receptors. The synergism of action of phytochemicals present in Cannabis sp. raw material is also expressed in their increased bioavailability and penetration through the blood-brain barrier. This review provides an overview of phytochemistry and pharmacology of compounds present in Cannabis extracts in the context of the current knowledge about their synergistic actions and the implications of clinical use in the treatment of selected diseases.
Keywords: Cannabis; multitarget; phytocannabinoids (THC and CBD); receptors; terpenes.
Heartland
Pervasive cropland in protected areas highlight trade-offs between conservation and food security
Global cropland expansion over the last century caused widespread habitat loss and degradation. Establishment of protected areas aims to counteract the loss of habitats and to slow species extinctions. However, many protected areas also include high levels of habitat disturbance and conversion for uses such as cropland. Understanding where and why this occurs may realign conservation priorities and inform protected area policy in light of competing priorities such as food security. Here, we use…

. 2021 Jan 26;118(4):e2010121118.
doi: 10.1073/pnas.2010121118.
Affiliations
Item in Clipboard
Proc Natl Acad Sci U S A. .
Abstract
Global cropland expansion over the last century caused widespread habitat loss and degradation. Establishment of protected areas aims to counteract the loss of habitats and to slow species extinctions. However, many protected areas also include high levels of habitat disturbance and conversion for uses such as cropland. Understanding where and why this occurs may realign conservation priorities and inform protected area policy in light of competing priorities such as food security. Here, we use our global synthesis cropland dataset to quantify cropland in protected areas globally and assess their relationship to conservation aims and socio-environmental context. We estimate that cropland occupies 1.4 million km2 or 6% of global protected area. Cropland occurs across all protected area management types, with 22% occurring in strictly protected areas. Cropland inside protected areas is more prevalent in countries with higher population density, lower income inequality, and with higher agricultural suitability of protected lands. While this phenomenon is dominant in midnorthern latitudes, areas of cropland in protected areas of the tropics and subtropics may present greater trade-offs due to higher levels of both biodiversity and food insecurity. Although area-based targets are prominent in biodiversity goal-setting, our results show that they can mask persistent anthropogenic land uses detrimental to native ecosystem conservation. To ensure the long-term efficacy of protected areas, post-2020 goal setting must link aims for biodiversity and human health and improve monitoring of conservation outcomes in cropland-impacted protected areas.
Keywords: CBD; area-based targets; conservation; food security; protected areas.
Conflict of interest statement
The authors declare no competing interest.
References
-
- Klein Goldewijk K., Beusen A., Doelman J., Stehfest E.. New anthropogenic land use estimates for the holocene: HYDE 3.2. Earth Syst. Sci. Data. 2017;9:927–953.
-
- Barrett C. B.. Measuring food insecurity. Science. 2010;327:825–828.
-
- Fogel R. W.. The Escape from Hunger and Premature Death, 1700-2100: Europe, America, and the Third World. 2004.
-
- Crist E., Mora C., Engelman R.. The interaction of human population, food production, and biodiversity protection. Science. 2017;356:260–264.
-
- Pimm S. L., Vijay V.. Population, Agriculture, and Biodiversity: Problems and Prospects. 2020;365.
-
News1 week ago
Pure Harvest Bolsters Corporate Team with Key Additions
-
Heartland6 days ago
MindMed Adds Chief Development Officer with FDA Phase 2 Psilocybin Clinical Trial Experience
-
Heartland1 week ago
Compared to Prescription Medication, Medical Cannabis Not Always Affordable Alternative
-
Heartland1 week ago
Mydecine Innovations Group Appoints Gordon Neal to Board of Directors and Dean Ditto as Chief Financial Officer
-
Heartland1 week ago
Novamind Appoints Chuck Rifici to its Board of Directors
-
Uncategorized1 week ago
Sundial Announces the Launch of Premium Concentrates Products Under its Top Leaf Brand
-
Heartland1 week ago
Can You Treat COVID-19 With CBD and Reduce Mortality Rates? A New Israeli Research Believes You Can!
-
Uncategorized5 days ago
MediPharm Labs Appoints Warren Everitt, CEO Australia Pacific, to Board of Directors